
doi: 10.1021/bi047706g
pmid: 15938630
Our recent demonstration that DNA polymerase X (Pol X), the DNA repair polymerase encoded by the African swine fever virus (ASFV), is extremely error prone during single-nucleotide gap filling led us to hypothesize that it might contribute to genetic variability in ASFV. For the infidelity of Pol X to be relevant, however, the DNA ligase working downstream of it would need to be capable of sealing nicks containing 3'-OH mismatches. We therefore examined the nick ligation capabilities of the ASFV-encoded DNA ligase and here report the first complete 3' fidelity analysis, employing catalytic parameters, for any DNA ligase. The catalytic efficiency of nick sealing by both ASFV DNA ligase and bacteriophage T4 DNA ligase was determined in the steady state for substrates containing all 16 possible matched and mismatched base pair combinations at the 3' side of a nick. Our results indicate that ASFV DNA ligase is the lowest-fidelity DNA ligase ever reported, capable of ligating a 3' C:T mismatched nick (where C and T are the templating and nascent nucleotides, respectively) more efficiently than nicks containing Watson-Crick base pairs. Comparison of the mismatch specificity of Pol X with that of ASFV DNA ligase suggests that the latter may have evolved toward low fidelity for the purpose of generating the broadest possible spectrum of sealed mismatches. These findings are discussed in light of the genetic and antigenic variability observed among some ASFV isolates. Two novel assays for determining the concentration of active DNA ligase are also reported.
DNA Ligases, DNA Repair, Base Pair Mismatch, Osmolar Concentration, Genetic Variation, DNA-Directed DNA Polymerase, Buffers, African Swine Fever Virus, Potassium Chloride, Substrate Specificity, Enzyme Activation, Evolution, Molecular, DNA Ligase ATP, Kinetics, DNA, Viral, 3' Untranslated Regions
DNA Ligases, DNA Repair, Base Pair Mismatch, Osmolar Concentration, Genetic Variation, DNA-Directed DNA Polymerase, Buffers, African Swine Fever Virus, Potassium Chloride, Substrate Specificity, Enzyme Activation, Evolution, Molecular, DNA Ligase ATP, Kinetics, DNA, Viral, 3' Untranslated Regions
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 41 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
