Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemistryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochemistry
Article . 2002
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochemistry
Article . 2002 . Peer-reviewed
Data sources: Crossref
Biochemistry
Article . 2002
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Domain Formation in Phosphatidylcholine Bilayers Containing Transmembrane Peptides: Specific Effects of Flanking Residues

Authors: Rinia, H.A.; Boots, J.W.P.; Rijkers, D.T.S.; Kik, R.A.; Snel, M.M.E.; Demel, R.A.; Killian, J.A.; +2 Authors

Domain Formation in Phosphatidylcholine Bilayers Containing Transmembrane Peptides: Specific Effects of Flanking Residues

Abstract

Lateral segregation in biological membranes leads to the formation of domains. We have studied the lateral segregation in gel-state model membranes consisting of supported dipalmitoylphosphatidylcholine (DPPC) bilayers with various model peptides, using atomic force microscopy (AFM). The model peptides are derivatives of the Ac-GWWL(AL)(n)WWA-Etn peptides (the so-called WALP peptides) and have instead of tryptophans, other flanking residues. In a previous study, we found that WALP peptides induce the formation of extremely ordered, striated domains in supported DPPC bilayers. In this study, we show that WALP analogues with other uncharged residues (tyrosine, phenylalanine, or histidine at pH 9) can also induce the formation of striated domains, albeit in some cases with a slightly different pattern. The WALP analogues with positively charged residues (lysine or histidine at low pH) cannot induce striated domains and give rise to a completely different morphology: they induce irregularly shaped depressions in DPPC bilayers. The latter morphology is explained by the fact that the positively charged peptides repel each other and hence are not able to form striated domains in which they would have to be in close vicinity. They would reside in disordered, fluidlike lipid areas, appearing below the level of the ordered gel-state lipid domains, which would account for the irregularly shaped depressions.

Country
Netherlands
Related Organizations
Keywords

Microscopy, Electron, Calorimetry, Differential Scanning, Circular Dichroism, Lipid Bilayers, Molecular Sequence Data, Phosphatidylcholines, Freeze Fracturing, Amino Acid Sequence, Microscopy, Atomic Force

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    77
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
77
Average
Top 10%
Top 10%
Green
bronze