Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Interaction of effecting ligands with lac repressor and repressor-operator complex

Authors: M D, Barkley; A D, Riggs; A, Jobe; S, Burgeois;

Interaction of effecting ligands with lac repressor and repressor-operator complex

Abstract

The equilibrium association constants for the binding of a wide variety of effecting ligands of the lac repressor were measured by equilibrium dialysis. Also, detailed investigations of the apparent rate of dissociation of repressor-operator comples as a function of ligand concentration were carried out for several inducers and anti-inducers. The affinity of repressor-ligand comples for operator DNA was evaluated from the specific rate constants at saturating concentrations of effecting ligand. By fitting the experimental data depicting the functional dependence of the rate of dissociation upon ligand concentrations to calculated curves, assuming simple models of the induction mechanism, the equilibrium association constant for the binding of effecting ligand to repressor-operator comples was determined. Inducers reduce the affinity of lac repressor for operator DNA by a factor of approximately 1000 under standard conditions; the extent of destabilization depends on Mg2+ ion concentration. Anti-inducers increase the affinity of repressor for operator at most a factor of five. Only one neutral ligand, which binds to repressor without altering the stability of repressor-operator comples, was found. No homotropic or heterotropic interactions in the binding of effecting ligands either to repressor or to repressor-operator complex are evident.

Keywords

DNA, Bacterial, Binding Sites, Osmolar Concentration, Temperature, Galactose, Lactose, Hydrogen-Ion Concentration, Ligands, Kinetics, Drug Stability, Operon, Escherichia coli, Magnesium, Glycosides, Dialysis, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    180
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
180
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!