<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1021/bi00372a027
pmid: 3026466
Pheochromocytoma (PC12) cells have been found to differ from dorsal root ganglionic cells with respect to the modulation of the beta nerve growth factor (beta NGF) binding properties elicited by alpha NGF and gamma NGF. In contrast to our previous results with intact dorsal root ganglionic cells in which only high-affinity binding was blocked, alpha NGF and gamma NGF were found to block competitively all steady-state binding of iodinated beta NGF to PC12 cells at both 37 and 0.5 degrees C. The EC50 that was found for the alpha NGF displacement was 9-10 microM, and the gamma NGF effect had an EC50 of 200 nM, in the predicted range based upon the apparent Kd for dissociation of the alpha beta or the beta gamma complex in solution. The concurrence of the binding EC50 and the Kd for each complex indicates that the formation of alpha beta or beta gamma complexes in solution competes with the process of PC12 receptor binding with 125I-beta NGF. Experiments were carried out examining the dissociation kinetics following the addition of excess unlabeled beta NGF or alpha NGF at both 37 and 0.5 degrees C. Three dissociation components were observed with alpha NGF, in contrast to the two normally found with beta NGF. Lowering the chase temperature to 0.5 degrees C changed the relative contributions made by each component without dramatically changing any of the rate constants. The "slow" receptor was further examined by the dependence on 125I-beta NGF concentration of the slowest component with a chase of either excess alpha NGF or excess gamma NGF at 0.5 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)
Cell Membrane, Adrenal Gland Neoplasms, Receptors, Cell Surface, Pheochromocytoma, Receptors, Nerve Growth Factor, Cell Line, Rats, Kinetics, Animals, Thermodynamics, Nerve Growth Factors, Mathematics
Cell Membrane, Adrenal Gland Neoplasms, Receptors, Cell Surface, Pheochromocytoma, Receptors, Nerve Growth Factor, Cell Line, Rats, Kinetics, Animals, Thermodynamics, Nerve Growth Factors, Mathematics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |