Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Characterization of phenylalanine hydroxylase

Authors: L. M. Bloom; Stephen J. Benkovic; Betty J. Gaffney;

Characterization of phenylalanine hydroxylase

Abstract

Iron can be bound to phenylalanine hydroxylase (PAH) in two environments. The assignment of the electron paramagnetic resonance spectrum of PAH to two, overlapping high-spin ferric signals is confirmed by computer simulation. Both environments are shown to be populated in the crude enzyme. Reconstitution of the apoenzyme demonstrated that the two iron environments are not interconvertible. Oxygen consumption during PAH reduction by tetrahydropterin in the absence of phenylalanine but not in its presence explains the different reduction stoichiometries (tetrahydropterin:enzyme) that have been observed.

Related Organizations
Keywords

Male, Iron, Electron Spin Resonance Spectroscopy, Phenylalanine Hydroxylase, Rats, Kinetics, Apoenzymes, Oxygen Consumption, Liver, Animals, Oxidation-Reduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Average
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?