
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>doi: 10.1021/bi00171a025
pmid: 8110756
Formation of the lactose repressor tetramer is postulated to involve two subunit interfaces, one primarily contributing to monomer-monomer assembly to dimer and the second to dimer-dimer association to tetramer. The latter interface requires a heptad repeat of three leucines at the C-terminus of lac repressor that is presumed to form an abbreviated coiled-coil motif [Chakerian, A. E., Tesmer, V. M., Manly, S. P., Brackett, J. K., Lynch, M. J., Hoh, J. T., & Matthews, K. S. (1991) J. Biol. Chem. 266, 1371-1374; Alberti, S., Oehler, S., von Wilcken-Bergmann, B., Krämer, H., & Müller-Hill, B. (1991) New Biol. 3, 57-62; Chen, J., & Matthews, K. S. (1992) J. Biol. Chem. 267, 13843-13850]. To strengthen the dimer-dimer interface, this motif was extended by the addition of one and two leucine heptad repeat units to the C-terminus by site-specific insertion mutagenesis. The tetrameric products displayed operator and inducer affinity essentially indistinguishable from the wild-type repressor. In order to probe the effect of the elongated coiled-coil on assembly of the repressor tetramer, the other of the two postulated subunit interfaces was disrupted by introducing a point mutation (Y282D) that yields a monomeric protein in the wild-type background. Both elongated mutant repressors were able to assemble into dimeric species, apparently due to the strengthened subunit association at the C-terminal region compared to the wild-type repressor. These results further confirm the role of a coiled-coil structure in the formation of tetramer in the lac repressor.(ABSTRACT TRUNCATED AT 250 WORDS)
DNA, Bacterial, Repressor Proteins, Biopolymers, Base Sequence, Protein Conformation, Molecular Sequence Data, Escherichia coli, Mutagenesis, Site-Directed, Amino Acid Sequence
DNA, Bacterial, Repressor Proteins, Biopolymers, Base Sequence, Protein Conformation, Molecular Sequence Data, Escherichia coli, Mutagenesis, Site-Directed, Amino Acid Sequence
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
