Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Oligonucleotide Microarrays: Immobilization of Phosphorylated Oligonucleotides on Epoxylated Surface

Authors: S, Mahajan; P, Kumar; K C, Gupta;

Oligonucleotide Microarrays: Immobilization of Phosphorylated Oligonucleotides on Epoxylated Surface

Abstract

A facile and efficient method for direct immobilization of phosphorylated oligonucleotides on an epoxy-activated glass surface is described. The new immobilization strategy has been analyzed for its performance in DNA microarray under both microwave and thermal conditions. It reflects high immobilization efficiency ( approximately 23%), and signal-to-noise ratio ( approximately 98) and resulted in high hybridization efficiency ( approximately 36%) in comparison to those obtained with standard methods, viz., NTMTA ( approximately 9.76%) and epoxide-amine ( approximately 9.82%). The probes immobilized through the new strategy were found to be heat-stable, since the performance of microarray decreased by only approximately 7% after subjecting it to 20 PCR-like heat cycles, suggesting that the chemistry could be used in integrated PCR/microarray devices. The immobilization of probes following the proposed chemistry resulted in spots of superior quality in terms of spot morphology, spot homogeneity, and signal reproducibility. The constructed microarrays have been successfully used for the discrimination of nucleotide mismatches. In conclusion, these features make the new immobilization strategy ideal for facile, efficient, and cost-effective manufacturing of DNA microarrays.

Keywords

Hot Temperature, Molecular Structure, Surface Properties, Materials Testing, Oligonucleotides, Epoxy Compounds, Hydrogen-Ion Concentration, Sensitivity and Specificity, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!