
doi: 10.1021/bc0601065
pmid: 16984127
A facile and efficient method for direct immobilization of phosphorylated oligonucleotides on an epoxy-activated glass surface is described. The new immobilization strategy has been analyzed for its performance in DNA microarray under both microwave and thermal conditions. It reflects high immobilization efficiency ( approximately 23%), and signal-to-noise ratio ( approximately 98) and resulted in high hybridization efficiency ( approximately 36%) in comparison to those obtained with standard methods, viz., NTMTA ( approximately 9.76%) and epoxide-amine ( approximately 9.82%). The probes immobilized through the new strategy were found to be heat-stable, since the performance of microarray decreased by only approximately 7% after subjecting it to 20 PCR-like heat cycles, suggesting that the chemistry could be used in integrated PCR/microarray devices. The immobilization of probes following the proposed chemistry resulted in spots of superior quality in terms of spot morphology, spot homogeneity, and signal reproducibility. The constructed microarrays have been successfully used for the discrimination of nucleotide mismatches. In conclusion, these features make the new immobilization strategy ideal for facile, efficient, and cost-effective manufacturing of DNA microarrays.
Hot Temperature, Molecular Structure, Surface Properties, Materials Testing, Oligonucleotides, Epoxy Compounds, Hydrogen-Ion Concentration, Sensitivity and Specificity, Oligonucleotide Array Sequence Analysis
Hot Temperature, Molecular Structure, Surface Properties, Materials Testing, Oligonucleotides, Epoxy Compounds, Hydrogen-Ion Concentration, Sensitivity and Specificity, Oligonucleotide Array Sequence Analysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
