Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Bath's...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ACS ES&T Engineering
Article . 2025 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Elimination of NOx from Flue Gas in the Presence of Alkaline and Heavy Metals via Self-Protective Catalysts

Authors: Huan Wang; Fuli Wang; Yongjie Shen; Zaisheng Jin; Yanghailun He; Yuxin Zhang; Qinyi Zhou; +3 Authors

Elimination of NOx from Flue Gas in the Presence of Alkaline and Heavy Metals via Self-Protective Catalysts

Abstract

Selective catalytic reduction of NOx by ammonia under the exposure of alkaline and heavy metals in fly ash still remains a major challenge for NOx elimination among air pollution control. Herein, self-protective NOx reduction catalysts with remarkable alkaline and heavy metal resistance are originally designed by Ce and Cu dual active metal cations coexchanging attapulgite clays. It is revealed that the inherent Si-OH sites among attapulgite and partially exchanged Cu species effectively captured alkaline and heavy metal cation poisons through coordinate bonding or ion exchanging to protect the active components from being deactivated. Ultimately, highly efficient NOx reduction for stationary source flue gas catalytic purification is realized via the ingenious design of dual metal exchanged clay catalysts that own self-protective capacity to resist alkaline and heavy metal poisoning. This strategy paves the way for the development of low-temperature and high-efficiency denitrification catalysts with alkaline and heavy metal resistance for stationary source flue gas purification.

Related Organizations
Keywords

environmental catalysis, nitric oxide, /dk/atira/pure/subjectarea/asjc/1500/1504; name=Chemical Health and Safety, selective catalytic reduction, antipoisoning, /dk/atira/pure/subjectarea/asjc/1500/1501; name=Chemical Engineering (miscellaneous), /dk/atira/pure/subjectarea/asjc/1500/1508; name=Process Chemistry and Technology, deactivation, /dk/atira/pure/subjectarea/asjc/2300/2304; name=Environmental Chemistry

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Published in a Diamond OA journal