Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ACS Applied Material...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ACS Applied Materials & Interfaces
Article . 2019 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electrodeposition of MoSx Hydrogen Evolution Catalysts from Sulfur-Rich Precursors

Authors: Oluwaniyi Mabayoje; Yang Liu; Michael Wang; Ahmed Shoola; Amani M. Ebrahim; Anatoly I. Frenkel; C. Buddie Mullins;

Electrodeposition of MoSx Hydrogen Evolution Catalysts from Sulfur-Rich Precursors

Abstract

Amorphous molybdenum sulfides (a-MoSx) are known to be active electrocatalysts for the hydrogen evolution reaction (HER), but the role stoichiometry of the sulfur atoms plays in the HER activity remains unclear. In this work, we deposited thin films of a-MoSx from two thiomolybdate deposition baths with different sulfur ratios (MoS42- and Mo2S122-) and showed that the sulfur stoichiometry, as determined by X-ray photoelectron spectroscopy, is controlled by the precursor of choice and the electrochemical method used to deposit the thin films. Using the Mo2S122- precursor allows access to a MoS6 thin film, with a higher S/Mo ratio compared with that of any previously reported electrodeposited films. We also examined the effect of electrochemistry on the resulting S/Mo ratio in the as-prepared a-MoSx thin films. Samples with S/Mo ratios ranging from 2 to 6 were electrodeposited on glassy carbon (GC) substrates by using anodic, cathodic, or cyclic voltammetry deposition. The a-MoSx thin films deposited on GC substrates were tested as HER catalysts in acidic electrolytes. The overpotentials needed to drive current densities of 10 mA/cm2 ranged from 160 mV for MoS6 samples to 216 mV for MoS2 samples, signifying the important role sulfur content plays in HER activity of the prepared films. Furthermore, we characterized the deactivation of the a-MoSx films and found that the sulfur content is gradually depleted over time, leading to a slow deactivation of the a-MoSx thin-film catalysts. We showed a facile procedure that affords a-MoSx films with high sulfur content by using S-rich precursors and highlighted the role of sulfur in the prepared films for HER.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!