
pmid: 28325041
The oxidation state of titanium in titanium dioxide is commonly assumed to be +4. This assignment is based on the ionic approximation and is used ubiquitously to rationalize phenomena observed with TiO2. It implies a charge state +4 and that no further oxidation of the metal center is possible. We present a comprehensive electronic structure investigation of Ti ions, TiO2 molecules, and TiO2 bulk crystals using different density functional theory and wave function-based approaches, which shows that the charge state of Ti is +3. Specifically, there is evidence of a significant remaining contribution from valence s and d electrons of Ti, including the presence of a nuclear cusp around the Ti core. The charge corresponding to valence s and d states of Ti amounts to 1 e. This suggests the possibility of further oxidation of Ti in TiO2 compounds and challenges the commonly assumed picture of assigning the oxidation state of Ti in titania to +4.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 90 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
