Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Physi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Physical Chemistry B
Article . 2025 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Impact of Permeation Enhancers on Transcellular Permeation of Small Molecule Drugs

Authors: Mabel Bernaldez; Christopher Kang; Stephen D. Stamatis; John P. Rose; Rui Sun;

The Impact of Permeation Enhancers on Transcellular Permeation of Small Molecule Drugs

Abstract

Passive permeation through an epithelial membrane may be enhanced by using a class of amphiphilic molecules known as permeation enhancers (PEs). PEs have been studied in clinical trials and used in coformulations with peptides and small molecule drugs, and yet, an understanding of the permeant-PE interactions leaves much to be desired. This manuscript uses all-atom molecular dynamics (MD) simulations to showcase the effects of sodium caprate (C10) and salcaprozate sodium (SNAC), two commonly applied PEs, on membrane properties and the free energy profiles of five small molecule drugs (mannitol, atenolol, ketoprofen, decanedecaol, mucic acid). Our results show that both C10 and SNAC make the lipid molecules pack more densely, but C10 increases the lipid lateral diffusivity while SNAC decreases it. The change in the lipid order parameter also shows both PEs increasing the order near the lipid heads, possibly due to the dense packing in the membrane. A decrease in the central barrier of the permeation free energy was observed by embedding PEs into a lipid bilayer and SNAC is more efficient in doing so than C10. Neither SNAC nor C10 has a large impact on the diffusion coefficient of the small molecules. The analysis of the MD simulations revealed that PEs make the membrane tail region more hydrophilic by forming hydrogen bonds with small molecule drugs, i.e., decreasing the central barrier of the permeation free energy. While this study was only limited to small molecule drugs, this lays the groundwork for future studies to which the effects of the PEs in the permeation of macromolecules and peptides may be observed.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!