Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Physi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Physical Chemistry B
Article . 2021 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of Shear Rate and Protein Concentration on Amyloidogenesis via Interfacial Shear

Authors: Joe A. Adam; Hannah R. Middlestead; Nicholas E. Debono; Amir H. Hirsa;

Effects of Shear Rate and Protein Concentration on Amyloidogenesis via Interfacial Shear

Abstract

The influence of hydrodynamics on protein fibrillization kinetics is relevant to biophysics, biochemical reactors, medicine, and disease. This investigation focused on the effects of interfacial shear on the fibrillization kinetics of insulin. Human insulin served as a model protein for studying shear-induced fibrillization with relevance to amyloid diseases such as Alzheimer's, Parkinson's, prions, and type 2 diabetes. Insulin solutions at different protein concentrations were subjected to shear flows with prescribed interfacial angular velocities using a knife-edge (surface) viscometer (KEV) operating in a laminar axisymmetric flow regime where inertia is significant. Fibrillization kinetics were quantified using intrinsic fibrillization rate and times (onset, half, and end) determined through spectroscopic measurement of monomer extinction curves and fitting to a sigmoidal function. Additionally, the occurrence of gelation was determined through macroscopic imaging and transient fibril microstructure was captured using fluorescence microscopy. The results showed that increasing interfacial shear rate produced a monotonic increase in intrinsic fibrillization rate and a monotonic decrease in fibrillization time. Protein concentration did not significantly impact the intrinsic fibrillization rate or times; however, a minimum fibril concentration for gelation was found. Protein microstructure showed increasing aggregation and plaque/cluster formation with time.

Related Organizations
Keywords

Amyloid, Kinetics, Diabetes Mellitus, Type 2, Hydrodynamics, Humans, Insulin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?