Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fourier Transform Fluorescence-Encoded Infrared Spectroscopy

Authors: Joseph N. Mastron; Andrei Tokmakoff;

Fourier Transform Fluorescence-Encoded Infrared Spectroscopy

Abstract

While time-resolved infrared (IR) vibrational spectroscopy provides insight on structural dynamics of solution-phase systems, current techniques are limited to high concentrations. Fluorescence-encoded infrared spectroscopy (FEIR) can be used to encode IR-driven vibrational excitations into excited electronic states that fluoresce, which can be detected at lower concentrations than a coherently detected IR signal. Here, we report on the development of Fourier transform FEIR as an alternate approach for high-sensitivity IR spectroscopy. Upon driving vibrational excitation with a pair of IR fields with a variable time delay, an interferometric component was observed in the encoded fluorescence. This signal can be Fourier transformed to obtain a vibrational spectrum. By additionally varying the time delay of the encoding pulse following the second IR pulse, we observed frequency-difference oscillations, allowing us to construct a 2D correlation spectrum of coupled vibrations. Response functions for this experiment have been modeled, which reproduce the observed spectral features and relate them to excitation pathways using diagrammatic perturbation theory. The pathways observed in a 2D FEIR spectrum arise from the excitation of vibrational populations and coherences between coupled vibrations.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!