
We present a physically appealing and elegant picture for quantum computing using rules constructed for a game of darts. A dartboard is used to represent the state space in quantum mechanics and the act of throwing the dart is shown to have close similarities to the concept of measurement, or collapse of the wavefunction in quantum mechanics. The analogy is constructed in arbitrary dimensional spaces, that is using arbitrary dimensional dartboards, and for for such arbitrary spaces this also provides us a ``visual'' description of uncertainty. Finally, connections of qubits and quantum computing algorithms is also made opening the possibility to construct analogies between quantum algorithms and coupled dart-throw competitions.
Quantum Physics, FOS: Physical sciences, Popular Physics (physics.pop-ph), Physics - Popular Physics, Quantum Physics (quant-ph)
Quantum Physics, FOS: Physical sciences, Popular Physics (physics.pop-ph), Physics - Popular Physics, Quantum Physics (quant-ph)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
