Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Caltech Authors (Cal...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Physical Chemistry A
Article . 2020 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions
addClaim

Computation of Molecular Electron Affinities Using an Ensemble Density Functional Theory Method

Authors: Michael Filatov; Seunghoon Lee; Hiroya Nakata; Cheol Ho Choi;

Computation of Molecular Electron Affinities Using an Ensemble Density Functional Theory Method

Abstract

The computation of electron attachment energies (electron affinities) was implemented in connection with an ensemble density functional theory method, the state-interaction state-averaged spin-restricted ensemble-referenced Kohn-Sham (SI-SA-REKS or SSR) method. With the use of the extended Koopmans' theorem, the electron affinities and the respective Dyson orbitals are obtained directly for the neutral molecule, thus avoiding the necessity to compute the ionized system. Together with the EKT-SSR (extended Koopmans' theorem-SSR) method for ionization potentials, which was developed earlier, EKT-SSR for electron affinities completes the implementation of the EKT-SSR formalism, which can now be used for obtaining electron detachment as well as the electron attachment energies of molecules in the ground and excited electronic states. The extended EKT-SSR method was tested in the calculation of several closed-shell molecules. For the molecules in the ground states, the EKT-SSR energies of Dyson's orbitals are virtually identical to the energies of the unoccupied orbitals in the usual single-reference spin-restricted Kohn-Sham calculations. For the molecules in the excited states, EKT-SSR predicts an increase of the most positive electron affinity by approximately the amount of the vertical excitation energy. The electron affinities of a number of diradicals were calculated with EKT-SSR and compared with the available experimental data. With the use of a standard density functional (BH&HLYP), the EKT-SSR electron affinities deviate on average by ca. 0.2 eV from the experimental data. It is expected that the agreement with the experiment can be improved by designing density functionals parametrized for ionization energies.

Country
United States
Related Organizations
Keywords

540, 530

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
Green
bronze