<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We present a novel three-layer approach based on multilevel density functional theory (MLDFT) and polarizable molecular mechanics to simulate the electronic excitations of chemical systems embedded in an external environment within the time-dependent DFT formalism. In our method, the electronic structure of a target system, the chromophore, is determined in the field of an embedded inactive layer, which is treated as frozen. Long-range interactions are described by employing the polarizable fluctuating charge (FQ) force field. The resulting MLDFT/FQ thus accurately describes both electrostatics (and polarization) and non-electrostatic target-environment interactions. The robustness and reliability of the approach are demonstrated by comparing our results with experimental data reported for various organic molecules in solution.
Charge force-fields; linear-response; embedding theory; hartree-fock; fragmentation; energies; potentials; transition; solvation; mechanics, metodi matematici e applicazioni, Settore PHYS-04/A - Fisica teorica della materia, Settore CHEM-02/A - Chimica fisica, 540, 530, modelli
Charge force-fields; linear-response; embedding theory; hartree-fock; fragmentation; energies; potentials; transition; solvation; mechanics, metodi matematici e applicazioni, Settore PHYS-04/A - Fisica teorica della materia, Settore CHEM-02/A - Chimica fisica, 540, 530, modelli
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |