Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Agricultu...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Agricultural and Food Chemistry
Article . 2022 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Engineering Methyltransferase and Sulfoxide Synthase for High-Yield Production of Ergothioneine

Authors: Luwen Zhang; Jiawei Tang; Meiqing Feng; Shaoxin Chen;

Engineering Methyltransferase and Sulfoxide Synthase for High-Yield Production of Ergothioneine

Abstract

Ergothioneine (ERG) is an unusual sulfur-containing amino acid with antioxidant activity that can be synthesized by certain bacteria and fungi. Microbial fermentation is a promising method for ERG production. In this study, the bifunctional enzyme methyltransferase-sulfoxide synthase NcEgt1 from Neurospora crassa was truncated to obtain sulfoxide synthase TNcEgt1, which showed a higher expression level in Escherichia coli BL21(DE3). Then, the genes egtD encoding methyltransferase EgtD and egtE encoding C-S lyase EgtE from Mycobacterium smegmatis were cloned with TncEgt1 into E. coli BL21(DE3) to produce 70 mg/L ERG. To improve ERG production, TNcEgt1 and EgtD were modified, and the resulting mutants were screened with an established high-throughput method which could directly analyze the ERG content in culture broths. After several rounds of mutation and screening, the optimal mutant MD4 was obtained and produced 290 mg/L ERG. Furthermore, a fed-batch culture was conducted in a 5 L bioreactor. After optimizing the fermentation process, the ERG yield reached 5.4 g/L after 94 h of cultivation supplemented with amino acids and glycerol, which is the highest ERG yield reported to date. The results showed that ERG production was significantly improved by modifying the key enzymes, and the engineered strains constructed in this study have potential industrial application prospects.

Related Organizations
Keywords

Bacteria, Metabolic Engineering, Fermentation, Escherichia coli, Ergothioneine, Methyltransferases, Antioxidants

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!