Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemical Reviewsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemical Reviews
Article . 2019 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
Chemical Reviews
Article . 2021
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermodynamics of Prebiotic Phosphorylation

Authors: Matthew A. Pasek;

Thermodynamics of Prebiotic Phosphorylation

Abstract

The formation of organophosphate molecules by prebiotic processes relies on nonenzymatic synthesis. Given the centrality of phosphorylated biomolecules in metabolic, structural, and replicative processes, it is highly likely that such nonenzymatic synthesis had to occur early in Earth's history. This Review collects and uses thermodynamic data to constrain processes that may have produced organophosphates and evaluates both the plausibility of reactants and the likelihood that environments conducive to phosphorylation were present. The energy required to phosphorylate organics is ∼15 kJ/mol, requiring either very low water activities or reactive inorganic phosphorus compounds. Thermodynamics permits evaluating phosphorylation environments for both plausibility and novelty and shows that several routes would have been available to form these potentially key reagents. Building from phosphate monoesters to diesters may have enabled the synthesis of nucleic acids, perhaps opening a way into the RNA world.

Keywords

Evolution, Chemical, Nucleic Acids, Thermodynamics, Phosphorylation, Organophosphates

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    75
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
75
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!