
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 26035024
Herein, we introduce microfluidic superheating as a new method for peptide fragmentation prior to mass spectrometric analysis. The superheating conditions were found to be stable up to 240 °C for more than 30 min without elevated pressure or boiling of the aqueous sample. As proof of principle, we exposed the peptides ACTH1-10 and OVA257-264 to various superheating conditions, causing different degrees of decomposition. Optimized superheating conditions resulted in the entire peptide ladder sequence of the y-ions, allowing the amino acid sequence to be deduced from a single-stage mass spectrum. Thus, obtaining information in the same quality as from tandem mass spectrometry can be achieved by a single superheating step.
Hot Temperature, Sequence Analysis, Protein, Microfluidic Analytical Techniques, Mass Spectrometry, Peptide Fragments
Hot Temperature, Sequence Analysis, Protein, Microfluidic Analytical Techniques, Mass Spectrometry, Peptide Fragments
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
