
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>doi: 10.1021/ac901088f
pmid: 19637902
Atmospheric pressure chemical ionization-tandem mass spectrometry (APCI-MS/MS) was applied for the first time to the direct analysis of octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) in gaseous matrixes without extraction or prior chromatographic separation. Mass spectrometric characteristics of both compounds under APCI conditions and their fragmentation behavior in MS/MS were investigated. Unlike the classical gas chromatography/mass spectrometry (GC/MS), which involves solvent extraction before gas chromatography, the proposed approach prevents contamination from GC system components and provides unambiguous structural assignments. The method performs well achieving good linearity (R(2) > 0.997), low limits of detection (4-6 microg/m(3)), good precision (RSD 93%), and a wide dynamic range. Its applicability to real-world samples was evaluated through measurements of D4 and D5 concentrations in air and biogas samples. The high sensitivity, selectivity, and reliability of this method render our approach a good alternative to the commonly used GC/MS method.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 48 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
