<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
AbstractIn this brief proceedings article I summarize the review talk I gave at the IAU 246 meeting in Capri, Italy, glossing over the well-known results from the literature, but paying particular attention to new, previously unpublished material. This new material includes a careful comparison of the apparently contradictory results of two independent methods used to simulate the evolution of binary populations in dense stellar systems (the direct N-body method of Hurley, Aarseth, & Shara (2007) and the approximate Monte Carlo method of Ivanova et al. (2005)), that shows that the two methods may not actually yield contradictory results, and suggests future work to more directly compare the two methods.
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |