
AbstractAnswer set programming (ASP) is a form of declarative programming that allows to succinctly formulate and efficiently solve complex problems. An intuitive extension of this formalism is communicating ASP, in which multiple ASP programs collaborate to solve the problem at hand. However, the expressiveness of communicating ASP has not been thoroughly studied. In this paper, we present a systematic study of the additional expressiveness offered by allowing ASP programs to communicate. First, we consider a simple form of communication where programs are only allowed to ask questions to each other. For the most part, we deliberately consider only simple programs, i.e. programs for which computing the answer sets is in P. We find that the problem of deciding whether a literal is in some answer set of a communicating ASP program using simple communication is NP-hard. In other words, due to the ability of these simple ASP programs to communicate and collaborate, we move up a step in the polynomial hierarchy. Second, we modify the communication mechanism to also allow us to focus on a sequence of communicating programs, where each program in the sequence may successively remove some of the remaining models. This mimics a network of leaders, where the first leader has the first say and may remove models that he or she finds unsatisfactory. Using this particular communication mechanism allows us to capture the entire polynomial hierarchy. This means, in particular, that communicating ASP could be used to solve problems that are above the second level of polynomial hierarchy, such as some forms of abductive reasoning as well as PSPACE-complete problems such as STRIPS planning.
FOS: Computer and information sciences, Computer Science - Logic in Computer Science, COMPLEXITY, Computer Science - Programming Languages, D.1.6, Science General, D.1.6; F.1.3, Logic in Computer Science (cs.LO), MODEL, logic programming, multi-agent reasoning, communicating agents, F.1.3, LOGICS, answer set programming, Programming Languages (cs.PL)
FOS: Computer and information sciences, Computer Science - Logic in Computer Science, COMPLEXITY, Computer Science - Programming Languages, D.1.6, Science General, D.1.6; F.1.3, Logic in Computer Science (cs.LO), MODEL, logic programming, multi-agent reasoning, communicating agents, F.1.3, LOGICS, answer set programming, Programming Languages (cs.PL)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
