<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
In this paper the ingredients of computing auditory perception are reviewed. On the basic level there is neurophysiology, which is abstracted to artificial neural nets (ANNs) and enhanced by statistics to machine learning. There are high-level cognitive models derived from psychoacoustics (especially Gestalt principles). The gap between neuroscience and psychoacoustics has to be filled by numerics, statistics and heuristics. Computerised auditory models have a broad and diverse range of applications: hearing aids and implants, compression in audio codices, automated music analysis, music composition, interactive music installations, and information retrieval from large databases of music samples.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |