<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 2824009
ABSTRACT:The study of neurotransmitter receptors aids in the understanding of the normal anatomy, pharmacology, therapeutics and pathophysiology of disease processes involving the basal ganglia. Receptors may be studied in vitro by homogenate binding experiments, enzyme analysis or quantitative autoradiography and in vivo with positron emission tomography. In the substantia nigra (SN), receptors have been identified for somatostatin, neurotensin, substance P, glycine, benzodiazepine and GABA, opiates, dopamine, angiotensin converting enzyme (ACE) and serotonin. The striatum has receptors for dopamine, GABA and benzodiazepines, acetylcholine, opiates, substance P, glutamate and cholecystokinin. GABA and benzodiazepine receptors are also located in the globus pallidus. In Parkinson's disease, striatal dopamine D-2 receptors are elevated in patients that have not received L-DOPA therapy. This supersensitivity is reversed with agonist therapy. Muscarinic binding to cholinergic receptors seems to correlate with dopamine receptors. Delta opiate receptors are increased in the caudate and mu binding is reduced in the striatum. In the SN of patients with Parkinson's disease, there is reduced binding of somatostatin, neurotensin, mu and kappa opiates, benzodiazepine and GABA and glycine. In Huntington's disease, there is reduced binding of GABA and benzodiazepines, dopamine, acetylcholine, glutamate and CCK. There is increased binding of GABA in both the SN and globus pallidus. Glycine binding is increased in the substantia nigra and ACE is reduced.
Receptors, Opioid, Animals, Humans, Receptors, GABA-A, Receptors, Muscarinic, Basal Ganglia, Receptors, Dopamine, Receptors, Neurotransmitter
Receptors, Opioid, Animals, Humans, Receptors, GABA-A, Receptors, Muscarinic, Basal Ganglia, Receptors, Dopamine, Receptors, Neurotransmitter
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 26 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |