Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ergodic Theory and D...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Ergodic Theory and Dynamical Systems
Article . 1997 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The structure of basins of attraction and their trapping regions

Authors: Helena E. Nusse; James A. Yorke;

The structure of basins of attraction and their trapping regions

Abstract

In dynamical systems examples are common in which two or more attractors coexist, and in such cases, the basin boundary is nonempty. When there are three basins of attraction, is it possible that every boundary point of one basin is on the boundary of the two remaining basins? Is it possible that all three boundaries of these basins coincide? When this last situation occurs the boundaries have a complicated structure. This phenomenon does occur naturally in simple dynamical systems. The purpose of this paper is to describe the structure and properties of basins and their boundaries for two-dimensional diffeomorphisms. We introduce the basic notion of a ‘basin cell’. A basin cell is a trapping region generated by some well chosen periodic orbit and determines the structure of the corresponding basin. This new notion will play a fundamental role in our main results. We consider diffeomorphisms of a two-dimensional smooth manifold $M$ without boundary, which has at least three basins. A point $x\in M$ is a Wada point if every open neighborhood of $x$ has a nonempty intersection with at least three different basins. We call a basin $B$ a Wada basin if every $x\in\partial\bar{B}$ is a Wada point. Assuming $B$ is the basin of a basin cell (generated by a periodic orbit $P$), we show that $B$ is a Wada basin if the unstable manifold of $P$ intersects at least three basins. This result implies conditions for basins $B_{1},B_{2},\ldots,B_{N}(N\ge 3)$ to satisfy $\partial\bar{B}_{1}=\partial\bar{B}_{2}=\cdots =\partial\bar{B}_{N}$.

Country
Netherlands
Keywords

DYNAMICS, indecomposable continuum, saddle-hyperbolic periodic orbit, SADDLES, SYSTEMS, BOUNDARIES, trapping region, Attractors and repellers of smooth dynamical systems and their topological structure, boundary of a basin of attraction, TRAJECTORIES, two-dimensional diffeomorphisms, Strange attractors, chaotic dynamics of systems with hyperbolic behavior, Wada property

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Top 10%
Average
Related to Research communities
Upload OA version
Are you the author? Do you have the OA version of this publication?