Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Symposium - Internat...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Symposium - International Astronomical Union
Article . 1984 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
https://doi.org/10.1007/978-94...
Part of book or chapter of book . 1984 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Jets in Molecular Clouds

Authors: Arieh Königl;

Jets in Molecular Clouds

Abstract

There is now growing evidence that the cosmic jet phenomenon manifests itself in a remarkable way in regions of active star formation embedded in dense molecular clouds. The first indications for oppositely directed, supersonic outflows from young stars were provided by molecular line observations (most notably of CO) which detected spatially separated regions of redshifted and blueshifted emission in association with embedded infrared sources. About twenty sources of this kind have been identified so far, and more are continuously being discovered; they typically have radii ∼1018cm, velocities ∼10–50 km s−1, dynamical ages ∼104yr, and energies ∼1046-1047erg s−1(see Bally and Lada 1983 for a review). Statistical arguments indicate that energetic outflows of this type are probably a common feature in stellar evolution, and that they occur in both massive and low-mass stars. Direct evidence that the outflows in many cases are highly collimated was subsequently provided by the detection of high-velocity Herbig-Haro objects (optical emission clumps with typical masses ∼10−5M⊙) along the axes of the bipolar CO lobes. Proper-motion measurements are now available for a number of these objects (e.g., Herbig and Jones 1981), and they invariably reveal that the velocity vectors (of typical magnitudes 200–400 km s−1) point away from the central star. The clumps are often found to consist of many sub-condensations which move independently with disparate speeds, but which nevertheless travel in the same general direction with an angular spread ≲ 10°. Finally, radio continuum observations (e.g., Cohen et al. 1982) and deep CCD images (e.g., Mundt and Fried 1983) have shown that the collimation of the outflows is already well established on scales of ≲ 1015cm.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
bronze