
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 28345506
SUMMARYEnvironmental fluctuations are expected to require special adaptations only if they are associated with a decrease in fitness. We compared reproductive performance between fleas fed on alternating (preferred and non-preferred) hosts and fleas fed solely on either a preferred or a non-preferred host to determine whether (1) host alternation incurs an immediate negative effect, and, if yes, then (2) whether this effect is greater in a host specialist (Parapulex chephrenis) than in host generalists (Xenopsylla conformisandSynosternus cleopatrae). We also compared flea performance under alternating host regimes with different host order (initial feeding on either a preferred or a non-preferred host). An immediate negative effect of alternating hosts on reproductive performance was found inP. chephrenisonly. These fleas produced 44·3% less eggs that were 3·6% smaller when they fed on alternating hosts as compared with a preferred host. In contrast,X. conformisandS. cleopatraeappeared to be able to adapt their reproductive strategy to host alternation by producing higher quality offspring (on average, 3·1% faster development and 2·1% larger size) without compromising offspring number. However, the former produced eggs that were slightly, albeit significantly, smaller when it fed on alternating hosts as compared with a preferred host. Moreover, host order affected reproductive performance in host generalists (e.g. 2·8% larger eggs when the first feeding was performed on a non-preferred host), but not in a host specialist. We conclude that immediate effects of environmental fluctuation on parasite fitness depend on the degree of host specialization.
Male, Reproduction, Feeding Behavior, Host Specificity, Rodent Diseases, Flea Infestations, Animals, Siphonaptera, Female, Murinae, Gerbillinae
Male, Reproduction, Feeding Behavior, Host Specificity, Rodent Diseases, Flea Infestations, Animals, Siphonaptera, Female, Murinae, Gerbillinae
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
