Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Laryn...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Laryngology & Otology
Article . 1979 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hearing loss in perforations of the tympanic membrane

Authors: S. W. Ahmad; G. V. Ramani;

Hearing loss in perforations of the tympanic membrane

Abstract

Abstract70 Patients with dry central perforations have been studied to assess the hearing loss. The hearing loss is greater at the lower frequencies and increases with the size of the perforation. Malleolar perforations cause more hearing loss than the non-malleolar unless the perforation involves less than 10 per cent of the tympanic membrance surface area. Perforations of the postero-inferior quadrant cause more hearing loss than those in the antero-inferior quadrant.The large effective surgace area of an intact and normally vibrating tympanic membrane plays a major role in the middle ear transformer mechanism. The loss of this surface area by perforation is bound to cause deafness (Mawson, 1962). The degree of hearing loss has been extensively studied in human cadavers (Békésy, 1939) and in cats (Bordley and Hardy, 1937; Payne and Githler, 1951) but not much published work is available on any detailed clinical study in human beings. Most authors have generally stated that ‘small perforations’ have little effect on hearing, and only low tones are affected (Wever and Lawrence, 1954). In two individuals, Bordley and Hardy (1937) found average losses of 12 dB over frequencies ranging from 256 to 4,096 Hz. 10–30 dB loss is quoted by Simpson et al. (1967), and 20–45 dB loss in the speech frequencies by Thorburn (1971). It has been a general view that the hearing loss increases with the size of the perforation, more so it if is located in the postero-inferior quadrant (Mawson, 1962; Simpson et al., 1967; Thorburn, 1971). In a retrospective study of audiograms in 103 cases, Anthony and Harrison (1972) found that the maximum average loss occurred at 250 Hz., the loss being less in ‘small’ perforations (less than 2 mm. diameter) than in large ones, less in perforations touching the manubrium than in those away from it, and also less in perforations of the antero-inferior quadrant than in those in the postero-inferior quadrant.

Keywords

Adult, Male, Tympanic Membrane, Humans, Hearing Disorders

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?