Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Fluid Mec...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Fluid Mechanics
Article . 1981 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Shock waves

Authors: Griffith, Wayland C.;
Abstract

The first volume of the Journal of Fluid Mechanics contained nine articles (of 39) on shock waves. Some of these pioneered new branches of fluid mechanics. Others dealt with older problem areas. Surprising is one's realization that important elements of all topics are still of current interest. The subjects treated were shock structure, diffraction, refraction, waves in supersonic and hypersonic flows, large-amplitude acoustic and blast waves, and astrophysical processes. The subsequent addition of work on chemically reactive flows, radiating and laser-induced shocks, the effects of electric and magnetic fields on shock propagation in ionized media and the development of computer-based methods of analysis have greatly broadened the scope of shock wave investigations during the ensuing twenty-five years. The paper traces some of the principal lines of investigation from early motivations to the present state of understanding and application. Motivation is not often consciously expressed in the scientific literature. Usually an external motivation in terms of identifiable needs for better understanding for the solution of practical problems can be identified; though much excellent work must be ascribed to that ubiquitous trait curiosity. The topics covered in this article were chosen as representative of the basic elements of shock wave interactions and effects. They are: shock structure, refraction, diffraction, shocks in liquid helium, and condensation and liquefaction shocks. The paper closes with an assessment of how approximate and computational methods developed for handling complex flow problems fare when applied to some of the basic shock interactions considered here. Most of the emphasis will be on shock waves in gases, for which knowledge of an equation of state has been key to the significant advances made during the last twenty-five years. For liquids and solids, shock waves have been used the other way around; to study state properties.

Keywords

condensation, approximations, liquefaction, Development of contemporary mathematics, History of fluid mechanics, numerical methods, diffraction, structure, Shock waves and blast waves in fluid mechanics, in liquid helium

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?