Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Fluid Mec...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Fluid Mechanics
Article . 1958 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On displacement thickness

Authors: M. J. Lighthill;

On displacement thickness

Abstract

Four alternative theoretical treatments of ‘displacement thickness’, and, generally, of the influence of boundary layers and wakes on the flow outside them, are set out, first for two-dimensional, and then for three-dimensional, laminar or turbulent, incompressible flow. They may be called the methods of ‘flow reduction’, ‘equivalent sources’, ‘velocity comparison’ and ‘mean vorticity’. The principal expression obtained for the displacement thickness δ1 in three-dimensional flow may be written $\delta_1 = \delta_x - \frac{1}{Uh_y} \frac {\partial}{\partial y}\int^x_0 \delta_y dx,$ if, as orthogonal coordinates (x, y) specifying position on the surface, we choose x as the velocity potential of the external flow, and y as a coordinate, constant along the external-flow streamlines, such that hydy is the distance between (x, y) and (x, y + dy); and if also δ x and δ y are the streamwise and transverse ‘volume-flow thicknesses’ $\delta_x = \frac {1}{U}\int _0^\infty (U - u)\;dz,\;\;\;\;\;\;\delta_y = \frac {1}{U}\int ^\infty_0 v\; dz,$z is the distance from the surface, u and v are the x and y components of velocity, and u takes the value U just outside the boundary layer.

Related Organizations
Keywords

fluid mechanics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    241
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
241
Top 10%
Top 0.1%
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?