Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Symbolic Logic
Article . 2025 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

TORSION-FREE ABELIAN GROUPS OF FINITE RANK AND FIELDS OF FINITE TRANSCENDENCE DEGREE

Authors: MENG-CHE TURBO HO; JULIA FRANDSEN KNIGHT; RUSSELL GEDDES MILLER;

TORSION-FREE ABELIAN GROUPS OF FINITE RANK AND FIELDS OF FINITE TRANSCENDENCE DEGREE

Abstract

Abstract Let $\operatorname {TFAb}_r$ be the class of torsion-free abelian groups of rank r, and let $\operatorname {FD}_r$ be the class of fields of characteristic $0$ and transcendence degree r. We compare these classes using various notions. Considering the Scott complexity of the structures in the classes and the complexity of the isomorphism relations on the classes, the classes seem very similar. Hjorth and Thomas showed that the $\operatorname {TFAb}_r$ are strictly increasing under Borel reducibility. This is not so for the classes $\operatorname {FD}_r$ . Thomas and Velickovic showed that for sufficiently large r, the classes $\operatorname {FD}_r$ are equivalent under Borel reducibility. We try to compare the groups with the fields, using Borel reducibility, and also using some effective variants. We give functorial Turing computable embeddings of $\operatorname {TFAb}_r$ in $\operatorname {FD}_r$ , and of $\operatorname {FD}_r$ in $\operatorname {FD}_{r+1}$ . We show that under computable countable reducibility, $\operatorname {TFAb}_1$ lies on top among the classes we are considering. In fact, under computable countable reducibility, isomorphism on $\operatorname {TFAb}_1$ lies on top among equivalence relations that are effective  $\Sigma _3$ .

Keywords

FOS: Mathematics, Mathematics - Logic, Logic (math.LO)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green