
arXiv: 2403.02488
Abstract Let $\operatorname {TFAb}_r$ be the class of torsion-free abelian groups of rank r, and let $\operatorname {FD}_r$ be the class of fields of characteristic $0$ and transcendence degree r. We compare these classes using various notions. Considering the Scott complexity of the structures in the classes and the complexity of the isomorphism relations on the classes, the classes seem very similar. Hjorth and Thomas showed that the $\operatorname {TFAb}_r$ are strictly increasing under Borel reducibility. This is not so for the classes $\operatorname {FD}_r$ . Thomas and Velickovic showed that for sufficiently large r, the classes $\operatorname {FD}_r$ are equivalent under Borel reducibility. We try to compare the groups with the fields, using Borel reducibility, and also using some effective variants. We give functorial Turing computable embeddings of $\operatorname {TFAb}_r$ in $\operatorname {FD}_r$ , and of $\operatorname {FD}_r$ in $\operatorname {FD}_{r+1}$ . We show that under computable countable reducibility, $\operatorname {TFAb}_1$ lies on top among the classes we are considering. In fact, under computable countable reducibility, isomorphism on $\operatorname {TFAb}_1$ lies on top among equivalence relations that are effective $\Sigma _3$ .
FOS: Mathematics, Mathematics - Logic, Logic (math.LO)
FOS: Mathematics, Mathematics - Logic, Logic (math.LO)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
