
arXiv: 1710.11050
handle: 11858/00-001M-0000-002E-9B99-D
We provide experimental measurements for the effective scaling of the Taylor–Reynolds number within the bulk $\mathit{Re}_{\unicode[STIX]{x1D706},\mathit{bulk}}$, based on local flow quantities as a function of the driving strength (expressed as the Taylor number $\mathit{Ta}$), in the ultimate regime of Taylor–Couette flow. We define $Re_{\unicode[STIX]{x1D706},bulk}=(\unicode[STIX]{x1D70E}_{bulk}(u_{\unicode[STIX]{x1D703}}))^{2}(15/(\unicode[STIX]{x1D708}\unicode[STIX]{x1D716}_{bulk}))^{1/2}$, where $\unicode[STIX]{x1D70E}_{bulk}(u_{\unicode[STIX]{x1D703}})$ is the bulk-averaged standard deviation of the azimuthal velocity, $\unicode[STIX]{x1D716}_{bulk}$ is the bulk-averaged local dissipation rate and $\unicode[STIX]{x1D708}$ is the liquid kinematic viscosity. The data are obtained through flow velocity field measurements using particle image velocimetry. We estimate the value of the local dissipation rate $\unicode[STIX]{x1D716}(r)$ using the scaling of the second-order velocity structure functions in the longitudinal and transverse directions within the inertial range – without invoking Taylor’s hypothesis. We find an effective scaling of $\unicode[STIX]{x1D716}_{\mathit{bulk}}/(\unicode[STIX]{x1D708}^{3}d^{-4})\sim \mathit{Ta}^{1.40}$, (corresponding to $\mathit{Nu}_{\unicode[STIX]{x1D714},\mathit{bulk}}\sim \mathit{Ta}^{0.40}$ for the dimensionless local angular velocity transfer), which is nearly the same as for the global energy dissipation rate obtained from both torque measurements ($\mathit{Nu}_{\unicode[STIX]{x1D714}}\sim \mathit{Ta}^{0.40}$) and direct numerical simulations ($\mathit{Nu}_{\unicode[STIX]{x1D714}}\sim \mathit{Ta}^{0.38}$). The resulting Kolmogorov length scale is then found to scale as $\unicode[STIX]{x1D702}_{\mathit{bulk}}/d\sim \mathit{Ta}^{-0.35}$ and the turbulence intensity as $I_{\unicode[STIX]{x1D703},\mathit{bulk}}\sim \mathit{Ta}^{-0.061}$. With both the local dissipation rate and the local fluctuations available we finally find that the Taylor–Reynolds number effectively scales as $\mathit{Re}_{\unicode[STIX]{x1D706},\mathit{bulk}}\sim \mathit{Ta}^{0.18}$ in the present parameter regime of $4.0\times 10^{8}<\mathit{Ta}<9.0\times 10^{10}$.
Rotating turbulence, Turbulent transport, mixing, Convective turbulence, UT-Hybrid-D, Fluid Dynamics (physics.flu-dyn), FOS: Physical sciences, Turbulent convection, General theory of rotating fluids, Physics - Fluid Dynamics, turbulent convection, rotating turbulence, Taylor-Couette flow, Taylor–Couette flow
Rotating turbulence, Turbulent transport, mixing, Convective turbulence, UT-Hybrid-D, Fluid Dynamics (physics.flu-dyn), FOS: Physical sciences, Turbulent convection, General theory of rotating fluids, Physics - Fluid Dynamics, turbulent convection, rotating turbulence, Taylor-Couette flow, Taylor–Couette flow
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
