Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Fluid Mec...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Fluid Mechanics
Article . 2015 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Spectral scaling in boundary layers and pipes at very high Reynolds numbers

Authors: Vallikivi, M.; Ganapathisubramani, B.; Smits, A. J.;

Spectral scaling in boundary layers and pipes at very high Reynolds numbers

Abstract

One-dimensional energy spectra in flat plate zero pressure gradient boundary layers and pipe flows are examined over a wide range of Reynolds numbers ($2600\leqslant \mathit{Re}_{{\it\tau}}\leqslant 72\,500$). The spectra show excellent collapse with Kolmogorov scaling at high wavenumbers for both flows at all Reynolds numbers. The peaks associated with the large-scale motions (LSMs) and superstructures (SS) in boundary layers behave as they do in pipe flows, with some minor differences. The location of the outer spectral peak, associated with SS or very large-scale motions (VLSMs) in the turbulent wall region, displays only a weak dependence on Reynolds number, and it occurs at the same wall-normal distance where the variances establish a logarithmic behaviour and where the amplitude modulation coefficient has a zero value. The results suggest that with increasing Reynolds number the energy is largely confined to a thin wall layer that continues to diminish in physical extent. The outer-scaled wavelength of the outer spectral peak appears to decrease with increasing Reynolds number. However, there is still significant energy content in wavelengths associated with the SS and VLSMs. The location of the outer spectral peak appears to mark the start of a plateau that is consistent with a $k_{x}^{-1}$ slope in the spectrum and the logarithmic variation in the variances. This $k_{x}^{-1}$ region seems to occur when there is sufficient scale separation between the locations of the outer spectral peak and the outer edge of the log region. It does not require full similarity between outer and wall-normal scaling on the wavenumber. The extent of $k_{x}^{-1}$ region depends on the wavelength of the outer spectral peak (${\it\lambda}_{OSP}$), which appears to emerge as a new length scale for the log region. Finally, based on the observations from the spectra together with the statistics presented in Vallikivi et al. (J. Fluid Mech., 2015 (submitted)), five distinct wall-normal layers are identified in turbulent wall flows.

Country
United Kingdom
Related Organizations
Keywords

570, 530

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    107
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
107
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!