
arXiv: 1510.05982
The dichromatic number of a graph $G$ is the maximum integer $k$ such that there exists an orientation of the edges of $G$ such that for every partition of the vertices into fewer than $k$ parts, at least one of the parts must contain a directed cycle under this orientation. In 1979, Erdős and Neumann-Lara conjectured that if the dichromatic number of a graph is bounded, so is its chromatic number. We make the first significant progress on this conjecture by proving a fractional version of the conjecture. While our result uses a stronger assumption about the fractional chromatic number, it also gives a much stronger conclusion: if the fractional chromatic number of a graph is at least $t$, then the fractional version of the dichromatic number of the graph is at least ${\textstyle \frac{1}{4}}t/\log _{2}(2et^{2})$. This bound is best possible up to a small constant factor. Several related results of independent interest are given.
05C15, Coloring of graphs and hypergraphs, 05C15, 05C20, 05C80, 05C69, 05C35, QA1-939, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Mathematics
05C15, Coloring of graphs and hypergraphs, 05C15, 05C20, 05C80, 05C69, 05C35, QA1-939, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
