<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Chapter Preview. Predictive modeling involves the use of data to forecast future events. It relies on capturing relationships between explanatory variables and the predicted variables from past occurrences and exploiting them to predict future outcomes. The goal of this two-volume set is to build on the training of actuaries by developing the fundamentals of predictive modeling and providing corresponding applications in actuarial science, risk management, and insurance. This introduction sets the stage for these volumes by describing the conditions that led to the need for predictive modeling in the insurance industry. It then traces the evolution of predictive modeling that led to the current statistical methodologies that prevail in actuarial science today.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 26 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |