
Bringing together leading researchers, this 2004 volume surveys numerous developments in the fields of atmospheric turbulence and mesoscale meteorology, with particular emphasis on the areas pioneered by Douglas K. Lilly. Numerical simulation is an increasingly important tool for improving our understanding of a wide range of atmospheric phenomena. The first part of this book looks at the development of theoretical and computational analyses of atmospheric turbulent flows, and reviews research advances in this area. Chapters in the second part look at various aspects of mesoscale weather phenomena: from the numerical forecasting of individual thunderstorms to understanding how mountains affect local weather and climate. Researchers and graduate students will find the book to be an excellent resource summarizing the development of techniques as well as current and future work in the fields of atmospheric turbulence and mesoscale meteorology.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
