Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1017/cbo978...
Part of book or chapter of book . 2003 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Compressible turbulence and turbulent convection

Authors: Dieter Biskamp;

Compressible turbulence and turbulent convection

Abstract

In the previous chapters turbulence was assumed incompressible. As discussed in Section 2.3, this assumption is valid if either the sonic Mach number of the flow is small, M s = υ/c s « 1, or the Alfven Mach number is small, M A = υ/υ A « 1. The former condition applies to a weakly magnetized plasma, in which υ A « c s , or to motions along the magnetic field, while the latter applies to motions perpendicular to the field. If the flow is turbulent, there is some arbitrariness in the definition of the Mach numbers, since one may choose (a) the mean flow velocity, (b) the r.m.s. velocity fluctuation υ = 〈ῦ 2 〉 1/2 = ( E k ) 1/2 , or (c) the local velocity. Following convention in turbulence theory, we refer to the Mach number in terms of the r.m.s. velocity, noting that local Mach numbers may be considerably higher. Since laboratory plasmas are usually confined by a strong magnetic field, they can be considered incompressible, the dynamics consisting mainly of cross-field motions. Also the motions in the liquid core of the Earth, which drive the Earth's dynamo, are incompressible, since M s « 1 (here inertial effects are often neglected altogether, which is called the magnetostrophic approximation). By constrast, most astrophysical plasmas are compressible, for instance the interstellar medium, which is rather cold, such that, in the turbulent motions observed, M s , and possibly also M A , tend to be large (see Chapter 12), or the turbulence in the interplanetary plasma, which is riding on the supersonic and super-Alfvenic solar wind (Chapter 10).

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?