
We start by defining the notion of Riemann tensor and curvature, and positive and negative curvature spaces. We then show how to turn a special relativistic invariant theory into a general relativistic invariant one and write down the Einstein–Hilbert action for gravity, based on Einstein's principles and on matching with experiment. We then derive its equations of motion, Einstein's equations. We give examples of usual energy–momentum tensors in curved space and end by interpreting the Einstein's equations.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
