Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of Bradykinin on Nociceptors

Authors: Gábor Pethő; Peter W. Reeh;

Effects of Bradykinin on Nociceptors

Abstract

Abstract Bradykinin is a potent mediator formed upon tissue damage and inflammation. It can both excite and sensitize nociceptors to heat, mechanical, and chemical stimuli. Two types of bradykinin receptors (B1 and B2) have been identified of which the constitutive B2 receptors mediate most of the acute effects of bradykinin in uninflamed tissues while the B1 receptors are induced and become activated during inflammation. Both receptor subtypes utilize similar signaling pathways including activation of protein kinase C (PKC), elevation of intracellular Ca2+ concentration, and release of arachidonic acid. PKC activation is the major mechanism underlying the neuronal excitatory and heat-sensitizing actions of bradykinin while Ca2+ accumulation induces formation of nitric oxide within sensory neurons which is involved – together with receptor downregulation – in the development of tachyphylaxis of B2 receptor-mediated effects of bradykinin. Nitric oxide, however, may also contribute to the excitatory and sensitizing actions of bradykinin. Cyclooxygenase metabolites of arachidonic acid (prostanoids) may also be involved in both the excitatory and the sensitizing effects of bradykinin. Recently, a new signaling mechanism has been revealed for bradykinin which involves activation of the capsaicin TRPV1 receptor through PKC activation and formation of 12-lipoxygenase products of arachidonic acid. According to a novel hypothesis, the neuronal excitatory action of bradykinin is not a separate effect but in fact a heat response as a result of a massive heat sensitization with a threshold drop below the ambient temperature. Prostanoids can also sensitize nociceptors to heat, mechanical, and chemical stimuli predominantly via the cyclic adenosine 3′,5′-monophosphate–protein kinase A pathway that modulates various membrane channels including Ca2+-dependent or voltage-gated K+ channels, tetrodotoxin-resistant Na+ channels as well as ligand-gated or noxious heat-gated ion channels.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?