
Advances in diagnostic technology, including chronic intracranial EEG recordings, have confirmed the clinical observation of different temporal patterns of epileptic activity and seizure occurrence over a 24-h period. The rhythmic patterns in epileptic activity and seizure occurrence are probably related to vigilance states and circadian variation in excitatory and inhibitory balance. Core circadian genes BMAL1 and CLOCK, which code for transcription factors, have been shown to influence excitability and seizure threshold. Despite uncertainties about the relative contribution of vigilance states versus circadian rhythmicity, including circadian factors such as seizure timing improves sensitivity of seizure prediction algorithms in individual patients. Improved prediction of seizure occurrence opens the possibility for personalised antiepileptic drug-dosing regimens timed to particular phases of the circadian cycle to improve seizure control and to reduce side-effects and risks associated with seizures. Further studies are needed to clarify the pathways through which rhythmic patterns of epileptic activity are generated, because this might also inform future treatment options.
Epilepsy, Animals, Humans, Circadian Rhythm
Epilepsy, Animals, Humans, Circadian Rhythm
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 101 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
