
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>The observed oxygen abundances in a number of irregular galaxies have been compared with predictions of the closed-box model of chemical and photometric evolution of galaxies. Oxygen is found to be deficient with respect to the predicted abundances. This is an indicator in favor of loss of heavy elements via galactic winds or/and of infall of low--abundance gas onto the galaxy. The oxygen abundance deficiency observed within the optical edge of a galaxy cannot be explained by mixing with the gas envelope observed outside the optical limit. We confirm the widespread idea that a significant part of the heavy elements is ejected by irregular galaxies in the intergalactic medium.
8 pages, 7 figures, accepted for publication in Astronomy and Astrophysics
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
