<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 12399177
Broken chromosomal ends in somatic cells of higher plants frequently heal by the ligation of DNA ends to unrelated sequences or to sequences with micro-homologies. This pathway of DNA-strand-break repair is the bane of gene-targeting attempts in plants. However, there is a second somatic pathway of chromosome repair, which is driven by DNA-sequence homology. Observations from yeast, fly and plants of homologous-recombination mechanisms point towards new strategies of gene targeting in plants.
DNA Replication, Recombination, Genetic, DNA Repair, Models, Genetic, Arabidopsis Proteins, Replication Origin, Saccharomyces cerevisiae, Chromatin, Chromosomes, Plant, Meiosis, Mutation, DNA Damage
DNA Replication, Recombination, Genetic, DNA Repair, Models, Genetic, Arabidopsis Proteins, Replication Origin, Saccharomyces cerevisiae, Chromatin, Chromosomes, Plant, Meiosis, Mutation, DNA Damage
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 60 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |