Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article . 2002
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Biology
Article . 2002 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Current Biology
Article . 2002
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The insulin signalling pathway

Authors: Jose M. Lizcano; Dario R. Alessi;

The insulin signalling pathway

Abstract

A key aim for future research is to identify the hydrophobic motif kinase that phosphorylates PKB, S6K, SGK and to establish how this protein kinase(s) is regulated by PtdIns(3,4,5)P3. It is also becoming obvious that the information obtained by the overexpression of constitutively active and dominant negative mutants of protein kinases is not providing physiologically reliable results and that new genetic and pharmacological approaches are needed to identify the substrates of each of the individual insulin-regulated protein kinases and to establish their roles in mediating insulin-dependent responses. Another key challenge will be to define the mechanism by which PKB and the activation of TC10 trigger the translocation of GLUT4 from its intracellular stores to the plasma membrane. Although our understanding of the insulin signal transduction pathway is far from being complete, our current knowledge of this pathway provides a framework for the development of novel drugs to treat diabetes. For example a drug that could mimic PtdIns(3,4,5)P3 would be expected to promote glucose uptake, glycogen synthesis and stimulate protein synthesis in tissues of diabetic patients. Recent studies have also demonstrated that inhibitors of GSK3, do indeed mimic the effects of insulin on this enzyme in cell lines and promote the uptake of glucose from the blood and its conversion to glycogen. If drugs that mimic the effect that insulin has on its signalling pathway are orally effective, it is possible that these could be used to treat type 1, as well as type 2 diabetes, and so reduce or replace the need for daily insulin injections.

Keywords

3-Phosphoinositide-Dependent Protein Kinases, Glucose, Agricultural and Biological Sciences(all), Biochemistry, Genetics and Molecular Biology(all), Cell Membrane, Humans, Insulin, Protein Serine-Threonine Kinases, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    254
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
254
Top 1%
Top 1%
Top 10%
hybrid