Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Journal of Pharmaceutics and Biopharmaceutics
Article . 1999 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Influence of aqueous coatings on the stability of enteric coated pellets and tablets

Authors: Karoline Bechtold; Karl Thoma;

Influence of aqueous coatings on the stability of enteric coated pellets and tablets

Abstract

Pancreatin pellets, placebo pellets and tablets containing vitamin B2 were coated with various aqueous and organic enteric polymers, HPMCAS, HP, Eudragit L 100-55, Eudragit L 30 D-55, CAP, CAT, CMEC and PVAP, comparatively investigated and tested for storage stability. With the exception of Eudragit L 100-55 and Eudragit L 30 D-55, higher amounts of coating material were needed to achieve gastro-resistance with aqueous coating than with organic coating. Film formation from aqueous dispersions of micronized HP 55 was affected by the degree of micronization and was improved by reducing the particle size of the polymer. Undercoating was another suitable measure to decrease the amount of coating material required. The choice of plasticizer was of special importance in the aqueous dispersions, and type and quantity must be appropriate for the polymer applied. Non-polymeric plasticizers such as triethyl citrate (TEC) evaporated along with water during the spraying or drying process and high temperatures promoted such losses. The moisture-sensitive pancreatic enzymes were damaged both by humidity and heat during aqueous coating. The extent of damage was dependent on the coating equipment used. Upon storage, coatings obtained from aqueous dispersions showed changes in enteric performance or release characteristics as a consequence of three chemical/physical mechanisms: hydrolysis of ester linkages in the polymer or plasticizer, evaporation of the plasticizer, delayed film formation. The active ingredient pancreatin induced hydrolysis of the ester based film-former hydroxypropyl methylcellulose acetate succinate (HPMCAS). However, even without the influence of enzymes, the phthalic ester groups of aqueous hydroxypropyl methylcellulose phthalate (HP) were partly cleaved after 11 months storage. In HPMCAS-coated pancreatin pellets, the plasticizer glyceryl triacetate was almost completely hydrolyzed by the enzymes, whilst triethyl citrate was lost by evaporation through permeable packaging material at elevated temperatures. Open storage at elevated temperatures and humidities caused changes in the surface structure of HPMCAS coatings, consisting of a smoothing of the originally somewhat porous film and sticking. When applied to vitamin B2 tablets, Eudragit L 100-55, Opadry enteric (PVAP) and Aqoat (HPMCAS) proved to be quite stable aqueous enteric coatings, whereas cellulose acetate phthalate CAP or cellulose acetate trimellitate CAT coatings as ammonia-neutralized aqueous solution or as water-based pseudolatex Aquateric were unstable when stored under stress conditions.

Keywords

Drug Implants, Polymers, Riboflavin, Water, Lipase, Drug Stability, Plasticizers, Pancreatin, Tablets, Enteric-Coated, Particle Size, Volatilization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    91
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
91
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!