Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Medical Hypothesesarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Medical Hypotheses
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Treatment of post-burns bacterial infections by Fenton reagent, particularly the ubiquitous multiple drug resistant Pseudomonas spp.

Authors: O.G. Iranzo; Shamim I. Ahmad;

Treatment of post-burns bacterial infections by Fenton reagent, particularly the ubiquitous multiple drug resistant Pseudomonas spp.

Abstract

Post-burn microbial infections are a major problem in burns, and in cases of third degree burns, the survival of patients can depend not only upon the severity but also upon the extent and the type of infections. If proper measures are not employed, patients may suffer from opportunistic bacterial attacks, which can vary from simple infection, such as those easily treatable by antibiotics, to more complicated types, which may have natural or acquired resistance to drugs. Infection by multiple drug resistant (MDR) bacteria can create further complexity to the treatment. It is proposed that a combination of diluted hydrogen peroxide (H(2)O(2)) and ferrous sulphate (FeSO(4)), which generates hydroxyl radicals (*OH) via Fenton reaction, can effectively be used for the treatment of post-burns bacterial infections. It should be particularly useful for the ubiquitous opportunistic pathogen, Pseudomonas aeruginosa, known to be notoriously resistant to various antibiotics. This reactive oxygen species (ROS)-induced inactivation of the bacterial skin infections may be of particular importance in Third World countries where the incidence of burns and post-burns infections by MDR bacteria (due to the indiscriminate use of antibiotics, lack of stringent safety regulations and proper hygiene) may be more prevalent and where cocktails of antibiotics may be less affordable. Also, since the putative lack of development of bacterial resistance to *OH is not known, it provides an added advantage to the treatment. Finally, although this work addresses the control of bacterial infections in burns cases, it is envisaged that this ROS-induced chemotherapy may also be useful in combating other kinds of skin infections particularly those resisting antibiotic treatment.

Related Organizations
Keywords

Time Factors, Iron, Bacterial Infections, Hydrogen Peroxide, Drug Resistance, Multiple, Pseudomonas, Humans, Ferrous Compounds, Burns, Reactive Oxygen Species

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?