Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neurosciencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroscience
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Neuroscience
Article . 2003
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Localization and modulation of calcitonin gene-related peptide-receptor component protein-immunoreactive cells in the rat central and peripheral nervous systems

Authors: Kelly J. Powell; Khem Jhamandas; Ian M. Dickerson; Weiya Ma; Jean-Guy Chabot; Rémi Quirion;

Localization and modulation of calcitonin gene-related peptide-receptor component protein-immunoreactive cells in the rat central and peripheral nervous systems

Abstract

Calcitonin gene-related peptide (CGRP) is widely distributed in the central and peripheral nervous system. Its highly diverse biological activities are mediated via the G protein-coupled receptor that uniquely requires two accessory proteins for optimal function. CGRP receptor component protein (RCP) is a coupling protein necessary for CGRP-receptor signaling. In this study, we established the anatomical distribution of RCP in the rat central and peripheral nervous system and its relationship to CGRP immunoreactivity. RCP-immunoreactive (IR) perikarya are widely and selectively distributed in the cerebral cortex, septal nuclei, hippocampus, various hypothalamic nuclei, amygdala, nucleus colliculus, periaqueductal gray, parabrachial nuclei, locus coeruleus, cochlear nuclei, dorsal raphe nuclei, the solitary tractus nucleus and gracile nucleus, cerebellar cortex, various brainstem motor nuclei, the spinal dorsal and ventral horns. A sub-population of neurons in the dorsal root ganglia (DRG) and trigeminal ganglia were strongly RCP-IR. Overall, the localization of RCP-IR closely matched with that of CGRP-IR. We also determined whether RCP in DRG and dorsal horn neurons can be modulated by CGRP receptor blockade and pain-related pathological stimuli. The intrathecal injection of the antagonist CGRP(8-37) markedly increased RCP expression in the lumbar DRG and spinal dorsal horn. Carrageenan-induced plantar inflammation produced a dramatic bilateral increase in RCP expression in the dorsal horn while a partial sciatic nerve ligation reduced RCP expression in the ipsilateral superficial dorsal horn. Our data suggest that the distribution of RCP immunoreactivity is closely matched with CGRP immunoreactivity in most of central and peripheral nervous systems. The co-localization of RCP and CGRP in motoneurons and primary sensory neurons suggests that CGRP has an autocrine or paracrine effect on these neurons. Moreover, our data also suggest that RCP expression in DRG and spinal cord can be modulated during CGRP receptor blockade, inflammation or neuropathic pain and this CGRP receptor-associated protein is dynamically regulated.

Keywords

Central Nervous System, Inflammation, Male, Neurons, Calcitonin Gene-Related Peptide, Lumbosacral Region, Pain, Carrageenan, Immunohistochemistry, Sciatic Nerve, Peptide Fragments, Rats, Rats, Sprague-Dawley, Calcitonin Gene-Related Peptide Receptor Antagonists, Ganglia, Spinal, Peripheral Nervous System, Animals, Receptors, Calcitonin Gene-Related Peptide

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    112
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
112
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!