<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 10631796
Various proteins in signal transduction pathways are myristoylated. Although this modification is often essential for the proper functioning of the modified protein, the mechanism by which the modification exerts its effects is still largely unknown. Here we discuss the roles played by protein myristoylation, in both protein-lipid and protein-protein interactions. Myristoylation is involved in the membrane interactions of various proteins, such as MARCKS and endothelial NO synthase. The intermediate hydrophobic nature of the modification plays an important role in the reversible membrane anchoring of these proteins. The anchoring is strengthened by a basic amphiphilic domain that works as a switch for the reversible binding. Protein myristoylation is also involved in protein-protein interactions, which are regulated by the interplay between protein phosphorylation, calmodulin binding, and membrane phospholipids.
Molecular Sequence Data, Intracellular Signaling Peptides and Proteins, Membrane Proteins, Proteins, Amino Acid Sequence, Lipid Metabolism, Myristoylated Alanine-Rich C Kinase Substrate, Myristic Acid, Protein Binding
Molecular Sequence Data, Intracellular Signaling Peptides and Proteins, Membrane Proteins, Proteins, Amino Acid Sequence, Lipid Metabolism, Myristoylated Alanine-Rich C Kinase Substrate, Myristic Acid, Protein Binding
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 52 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |