Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Neurobio...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Progress in Neurobiology
Article . 1998 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Control of abdominal muscles

Authors: Steve Iscoe;

Control of abdominal muscles

Abstract

Abdominal muscles serve many roles; in addition to breathing, especially at higher levels of chemical drive or at increased end-expiratory lung volumes, they are responsible for, or contribute to, such protective reflexes as cough, sneeze, and vomiting, generate the high intra-abdominal pressures necessary for defecation and parturition, are active during postural adjustments, and play an essential role in vocalization in many species. Despite this widespread involvement, however, their control has, with rare exceptions, received little attention for two major reasons. First, in most anesthetized or decerebrate preparations, they are relatively inactive at rest, in part because the position of the preparation (supine or prone with abdomen supported), reduces lung volume and, therefore, their activity. Second, unlike phrenic motoneurons innervating the diaphragm, identification of motoneurons to a particular abdominal muscle is difficult. At the lumbar level, a given motoneuron may innervate any one of the four abdominal muscles; at the thoracic level, they are also intermixed with those innervating the intercostals. The two internal muscles, the internal oblique and the transverse abdominis, respond more to increases in chemical or volume-related drive than the two external muscles, the rectus abdominis and external oblique; the basis for this differential sensitivity is unknown. Segmental reflexes at the thoracic and lumbar levels are sufficient to activate abdominal motoneurons in the absence of descending drive but the basis for these reflex effects is also unknown. Neuroanatomical experiments demonstrate many more inputs to, and outputs from, the nucleus retroambigualis, the brainstem region in which the premotor neurons are located, than can be accounted for by their respiratory role alone. These other connections likely subserve activities other than respiration. Studies of the multifunctional roles of the abdominal muscles, on the basis of recent work, hold considerable promise for improving our understanding of their control.

Related Organizations
Keywords

Decerebrate State, Male, Motor Neurons, Medulla Oblongata, Electromyography, Diaphragm, Posture, Models, Biological, Chemoreceptor Cells, Rats, Neural Pathways, Cats, Animals, Humans, Female, Rabbits, Defecation, Hypoxia, Lung, Abdominal Muscles

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    183
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
183
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!