Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Advanced Drug Delive...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advanced Drug Delivery Reviews
Article . 1999 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Transport, metabolism and elimination mechanisms of anti-HIV agents

Authors: William K. Chan; Xiaoling Li;

Transport, metabolism and elimination mechanisms of anti-HIV agents

Abstract

Currently available anti-HIV drugs can be classified into three categories: nucleoside analogue reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, and protease inhibitors. Knowledge of these anti-HIV drugs in various physiological or pharmacokinetic compartments is essential for design and development of drug delivery systems for the treatment of HIV infection. The input and output of anti-HIV drugs in the biological systems are described by their transport and metabolism/elimination in this review. Transport mechanisms of anti-HIV agents across various biological barriers, i.e., gastrointestinal wall, skin, mucosa, blood cerebrospinal barrier, blood-brain barrier, placenta, and cellular membranes, are discussed. Their fates during and after systemic absorption and their metabolism-related drug interactions are reviewed. Many anti-HIV drugs presently marketed in the US bear some significant drawbacks such as relatively short half-life, low bioavailability, poor penetration into the central nervous system, and undesirable side effects. Efforts have been made to design drug delivery systems for the anti-HIV agents to: (1) reduce the dosing frequency; (2) increase the bioavailability and decrease the degradation/metabolism in the gastrointestinal tract; (3) improve the CNS penetration and inhibit the CNS efflux; and (4) deliver them to target cells selectively with minimal side effects. We hope to stimulate further interests in the area of controlled delivery of anti-HIV agents by providing current status of transport and metabolism/elimination of these agents.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 10%
Top 10%
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?