
pmid: 16520148
Intelligent medical systems are a special kind of medical software in general, and just as any medical software system they should make accurate presumptions. However, accuracy of intelligent medical systems is highly dependent on various factors such as: choosing an appropriate basic method (i.e. decision trees, neural networks), induction method (i.e. purity measures) and appropriate support methods (i.e. discretization, pruning, boosting). In this paper we present the results of extensive research of the above alternatives on 54 UCI databases and their influence on the accuracy of decision trees, which constitute one of the most desirable forms of intelligent medical systems. We also introduce new hybrid purity measures that on some databases outperform other purity measures. The results presented here show that the selection of the right purity measure with the proper discretization method and application of the boosting method can really make a difference in terms of higher accuracy of induced decision trees. Thereafter choosing the appropriate factors that can increase the accuracy of the induced decision tree is a very demanding and time-consuming task.
Artificial Intelligence, Algorithms, Software
Artificial Intelligence, Algorithms, Software
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
